Survey on Landmark DNN Accelerators and Design Processes in
Academia

Victor Martin Agostinelli I1I, Indhu Priya Karunagaran,
Diksha Pritam Todankar, and Kazi Ahmed Asif Fuad

March 2022

1 Introduction

Machine learning solutions are increasingly popular and applicable, but with the slowing down of Moore’s law
comes a necessity for dedicated hardware to accelerate those solutions further. Machine learning accelerators
are, as such, a hot area of both academic and commercial interest. Companies like Tesla and Google are
using dedicated hardware to enable tasks such as real-time vision for autonomous vehicles or translation
between disparate languages. In parallel, academic groups across the world are focused on exploring the
relatively young design space for these accelerators. Developments in this space are constant, exciting, and
have resulted in designs that operate quite differently from one another, in many cases with very clear
trade-offs between them in terms of power consumed, area taken up, and speed.

This survey seeks to acquire a holistic view of the deep neural network (DNN) accelerator design space,
some of the techniques that state of the art accelerators are being developed with, and a sense of which
modern architectures are relevant and how they compare with one another. To this end, a number of
papers published in relevant machine learning journals and at specific conferences must be engaged with
alongside notable commercial options. Indeed, this survey will be limited to those accelerator architectures
being developed by academically focused groups, as vastly more detailed literature exists on those designs
and the processes that went into creating them. Several accelerator designs have already been identified as
particularly promising, including Eyeriss from the Massachusetts Institute of Technology [5], FlexFlow from
the Chinese Academy of Sciences [2], and MAERI from the Georgia Institute of Technology [4], and will be
included in this survey’s comparisons. In addition to this, some limited simulation lies within the scope of
this survey, extracting performance and efficiency details from these designs using cutting edge accelerator
evaluation tools [6, 7].

2 Accelerator Design Background

A few key concepts should be kept in mind that apply to most, if not all, DNN accelerators, including the
typical components of a machine learning accelerator, the design stages for these accelerators, and how useful
metrics can be extracted from a given piece of dedicated hardware that allow for meaningful comparisons to
other architectures.

As far as components go, while this can and does vary on a case to case basis, the bulk of most accelerators
is typically dedicated to a systolic array of processing engines or processing elements (PEs). These PEs are
capable of accelerating typical arithmetic operations that a specific accelerator might need to often deal with,
with one incredibly common example being dedicated hardware within a PE for multiply-and-accumulate
operations (MACs). Tremendous energy efficiency gains can be acquired in the careful use of the array of
PEs in a given accelerator, making their efficient arithmetic for some model or task extremely important
[1]. In addition, many accelerators feature on-board buffers for less costly memory accesses, when necessary.
These buffers allow for a given accelerator to reuse specific pieces of data when it would be too costly in
terms of time or energy efficiency to pull it from off-chip memory.

The traditional design flow for a machine learning accelerator typically follows as such: the specification
of a dataflow, the selection of a mapping strategy, and the allocation of hardware resources [6]. The dataflow
for a given accelerator usually defines the accelerator’s data reuse strategy in addition to defining some
strategies for high PE array utilization that are beyond the scope of this survey [6]. Choosing a dataflow
is typically done either through heuristics, brute force search of a very limited design space, or selection by
experts [6]. The mapping strategy details how resources are mapped when a given machine learning model
demands more PEs or buffer space than the hardware allows, which can be common for large networks or
accelerators on the edge [7]. It is often wrapped together with the process of hardware resource allocation, as
its design space is quite small. In line with that, hardware resource allocation is, ultimately, the partitioning
of available buffer space and PEs according to the model’s computational needs and is accomplished through
DRL-based methods when it comes to cutting edge solutions, although such developments are still nascent
[7].

When attempting to extract useful metrics, the first set of metrics that appear as fairly universal for
machine learning accelerators would be power efficiency, performance for a given model and benchmark, and
physical size [6]. The final metric is a simple one to measure and make comparisons with, but the first two
can be more difficult to extract, especially if a team of architects is attempting to decide between suitable
accelerator architectures before design-time and must simulate. Fortunately, a few academic groups have
worked to provide tools that are capable of estimating one or both of these metrics, including MAESTRO
[6], a novel tool developed by a group at the Georgia Institute of Technology.

3 Literature Review

3.1 ShiDianNao

Yet another group focused on highly efficient accelerator designs, the authors of ShiDianNao [8] honed in on
an architecture specializing in efficient image recognition, capable of being implemented on the edge alongside
a sensor array. Correspondingly, the models that they were capable of supporting were generally much more
compact, with far fewer parameters expected and a requirement of all memory requests being answered on-
chip as opposed to allowing access to some off-chip memory. Especially in regards to image processing on the
edge, the authors justified expected drops in computational performance by considering sensor bandwidth
and throughput to be a limiting factor, thus rendering larger computational blocks unnecessary [8].

The comparison of ShiDianNao to other pieces of hardware capable of running the aforementioned DNN
and CNN models that this group was focused on was somewhat lacking, unfortunately. They compared this
architecture primarily to one of their previous designs, DianNao [11], in addition to some general purpose
hardware and found, unsurprisingly, that when normalized compared to the resources their previous design
had, ShiDianNao outperformed both comparable general purpose hardware and their previous design on
nearly all workloads, failing to its predecessor only where raw throughput was concerned [8]. Energy savings
abounded with this design, as expected.

3.2 Eyeriss

While a number of CNN accelerator architectures have sought out extreme energy efficiency, Eyeriss remains
interesting as the first to propose a rather novel approach: making use of a row-stationary dataflow [5].
Whereas previous architectures traditionally focused on three dataflows built on minimizing weight, input, or
output accesses for CNN accelerators, a row-stationary dataflow differs in that it approaches tasks adaptively
based on data reuse opportunities and hardware allocation for a given model and its layers. This dataflow
depends on an efficient mapping process, however, for individual computations across the systolic array of
PEs. The research group at MIT that built Eyeriss, in collaboration with NVIDIA, focused on breaking down
the convolutional layers of a given CNN model into what they call 71D convolution primitives” that they then
mapped over the course of a two-step process [5]. The first of those steps involved mapping the convolution
primitives to a logical array of PEs, with that logical array typically being significantly larger than what is
physically available in hardware. Following efficient logical mapping, physical mapping was necessary, taking
logical PEs and scheduling their tasks on physical PEs such that, oftentimes, a single physical PE would
execute the computations of a "row” of logical PEs that would handle a given 1D convolution primitive.

The evaluation of the Eyeriss architecture and its row-stationary dataflow was focused on comparisons
to other dataflow options for CNN accelerators, featuring the more traditional weight, input, and output
stationary dataflows in this case, on AlexNet, a CNN that was popular during its inception for accurate
object recognition in computer vision tasks [9] and with consistent hardware and parallelism opportunities.
Across the board, Eyeriss and its dataflow selection was found to access DRAM less often (meaning that less
energy and time was wasted on costly memory acesses) and use less energy per operation than its competitors

[5]-

3.3 FlexFlow

Authors of FlexFlow [2], Wenyan Lu et al. proposed a flexible dataflow architecture capable of mitigating
the mismatch between the varying dominant parallel types of CNN and computing engine supported parallel
types. There are three types of possible parallelism: synapse parallelism (SP), neuron parallelism (NP), and
feature map parallelism (FP), that can be explored to design CNN accelerator efficiently. Three prominent
architectures: Systolic, 2D-Mapping, and Tiling are individually efficient at supporting SP, NP, and FP
respectively. However, these architectures fail to explore parallelisms efficiently as the number of feature
maps, the number of output feature maps, the size of output feature map and the size of kernel varies
dramatically in different layers of CNNs. Modified proposed architecture is shown in Figure 1.

Neuron Buffer 1

: I B - IEa Convolutional Unit
il . Iﬂpul Neuron|Lines / Pooling Unit
. = - o
| JJ°ED | JPED | WPER | FPEN |
(0,0) || (0,2) (| (0,2) || (0,3)
= ¢ i i & AlU — —
PE PE PE PE O i -
. - - — = — - = I
— | 41,0) (1,1) (1,2) (1,3) S : = g
2 + 4 + 3 S’r ALU —— a
| L PE | PE PE | PE o] [« @
(2,0) (2,1) (2,2) || (2,3) S E =
B : . = : =AU —S—l
! ¥ = o LS
| PE PE PE PE 3 = .
0 [Ea ST e, -
| t ¥ ‘ + AlU — —
Control Signgl Lines

Figure 1: Flexflow Architecture [2]

This arrangement eliminates dependency between adjacent PEs and enables the Multiple Features Mul-
tiple Neurons Multiple Synapses (MFMNMS) style of processing as defined by the author. This processing
style signifies that the architecture handles multiple feature maps, multiple neurons, and multiple synapses
of each kernel at a time. The evaluation is carried out on resource utilization, power, energy, area, data
scalability and data reusability. FlexFlow is compared with Systolic, 2D-Mapping and Tiling architectures.
The workloads used are PV (pedestrians and vehicles recognition), FR (face recognition), LeNet-5, HG (hand
gesture recognition), AlexNet and VGG. Although FlexFlow implementation requires slightly larger area,
the computing resource utilization of FlexFlow is 80% compared to the baseline architectures’ max 60%
utilization for mixture of workloads. It achieves 2x performance and power efficiency speed up compared to
Systolic and 2D Mapping whereas 10x for Tiling while maintaining high scalability [2].

3.4 Using Dataflow to Optimize Energy Efficiency of Deep Neural Network
Accelerators

DNNs are comprised primarily of MAC operations. Most of their performance contains multichannel filters
with multichannel feature maps. Due to usage of MAC operations there are few dependencies between
datapoints, where DNN accelerators can use parallelism at high phase to achieve high performance. This
process requires a specific amount of data movement, and every MAC present performs with one write and
three reads data access. Since the key goal is to achieve high energy efficiency optimization, movement of
data is done when useful rather than freshly computing as the latter process often consumes more energy.
To further explain relevant topics in this paper, the authors resort to comparing compilation of code between
general purpose processors and DNN accelerators[1].

The difference is that a compiler is used to translate into machine readable binary codes for general pur-
pose processors, while for a DNN accelerator the mapper is used in place of a compiler to do the translation.
This operation of using a mapper is critical in that it optimizes energy efficiency. Data storage organization
also varies between them. Considering evaluating energy consumption, optimal mapping is required. The
authors of this paper evaluate energy consumption based on spatial architectures. These spatial architecture
consist of multilevel storage hierarchies and the array of PEs in a given accelerator. With a specific mapping
and given the energy system, energy consumption can be estimated by the number of times each data type
is reused at each level of the entire four-level hierarchy memory|[1].

In this paper there is a taxonomy of the existing DNN dataflows, including Weight-Stationary (WS)
dataflows which keep the filter weight stationary in each PE. In addition, there exist Output-Stationary(OS)
dataflows, which keep partial sums stationary by adding or accumulating them in the RF of individual PEs.
Finally, No-Local-Reuse(NLR) dataflows are covered, where there is no stationary data so it can directly
trade the RF off for a larger global buffer. An energy efficient dataflow describes DNN accelerators as they
optimize data movement for few data types. A newer dataflow, mentioned previously in this survey, is
called a Row-Stationary dataflow due to the fact that it divides the overall MAC operations and comprises
a subset of MACs that can run on the same PE in a fixed order. Row primitives are composed for each 1D
row convolution to optimize data reuse in each PE. Each row primitive is formed by a set of rules which has
to be followed for processing the combination. After processing the content with the specified rules, the RS
dataflow provides a high degree of flexibility in mapping, like concatenation, interleaving, duplicating, and
folding of the row primitives. Dataflow comparison is done by considering two constraints. First, the size of
the PE array is fixed at 256 for constant processing along dataflows. Next, the area of the total hardware
is fixed. By comparison they observe RS dataflow is 1.4 to 2.5 times more efficient than other dataflows in
the CONV layers of AlexNet. This process of dataflow selection is useful for energy efficiency optimization,
as covered by the authors of this paper, but is also critical for any sort of optimization depending on the
application and goals of a given design[1].

3.5 MAERI

In contrast to a number of other designs, MAERI is focused on flexibility above all. Whereas CNN accelera-
tors often have to select a single dataflow to specialize in, MAERI was built with reconfigurable interconnects,
meaning a flexible network on chip (NoC), between its PEs, allowing for a flexible transition of data across
the array [4]. Interestingly, this adaptability allows for mapping across highly irregular models. Should op-
timization for a given model require a non-traditional and unusually structured dataflow, MAERI is capable
of supporting such a network. While this flexibility is important in its own right, aiding multi-purpose accel-
erator design, the team behind MAERI was also focused on underlining that the overhead for MAERI’s NoC
was minimal and that it performed competitively compared to other options. The differences in mapping
structure between a more traditional DNN accelerator and MAERI is underscored by Figure 2 [4], where
the multiplier switches in their interconnect are effectively mapped to as opposed to individual PEs.

The team behind MAERI evaluated the architecture by comparing it specifically to Eyeriss and even more
traditional systolic array structures. They found that, generally, MAERI was a more compact architecture as
its PEs tended to require fewer elements than those of Eyeriss (a simpler RF structure, separation between
types of PEs for adder switches, multipler switches, simple switches, etc.). Holding the number of PEs
constant or the area constant, MAERI proved to hold advantages over Eyeriss related primarily to latency,

|

e ——— T

HEIHS
HEIEG]
-

M E] EEE

]
W

[yyp——————

[

- '.-"—me PB [SRAM)
(a) Systolic Array (b) MAERI

k|
E
H

Figure 2: Comparison Between Mapping CONV Layer to Systolic Array vs. MAERI [4]

as MAERI is relatively power-hungry. The team behind MAERI attributes this primarily to the design’s
very high levels of utilization, as their mapping of a given model can be relatively irregular in comparison
to Eyeriss and other designs.

3.6 Energy-Efficient Convolution Architecture Based on Rescheduled Dataflow

Rescheduled dataflow convolution has its hardware architecture with a focus on energy efficiency. For
involving a large amount of memory access and computation, previous accelerators use parallel processing
elements to overcome real-time constraints. Convolutional neural networks (CNN) have been used for various
applications due to their unprecedented accuracy, particularly related to object recognition as they can
discriminate between hundreds of object. This paper analyzes 1D and 2D convolution operations and on-chip
memory access patterns of two state-of the-art CNN accelerators. It continues by analyzing and renovating
the dataflow of aforementioned convolutions and summarizes the most suitable CNN architecture which can
maximize energy efficiency by reducing redundant on-chip memory access. Since the filtering operation is
repeated hierarchically, the CNN achieves a high recognition rate. According to this filtering, the convolution
operation makes various effects on the image input such as blurring, sharpening, and edge detection. By
using accumulation, combination, and convolution products an output image is achieved. The process that
takes place is the accelerators employs parallel multipliers to compute relevant products to an output cycle.
The adder tree accumulates the product to a fixed number to support limited convolution operations. By
the row-stationary dataflow structure, each PE computes partial sum relevant to results and row of weights
aggregated by passing to the upper PEs. A rescheduled dependence dataflow comes into the picture to
reduce the energy overhead consumed by on-chip memory access. Few changes are made to reschedule the
data flow. The number of steps is directly proportional to the size of the input feature by using OM. By
accumulating the partial sums incrementally has the input data loaded only once from IN, which enhance
the overall energy efficiency. Output features can be calculated by gradually accessing IM only once and
computing the products related to the input at once.We get to know that the significant portion of the energy
is mainly taken in on-chip memory access,hence the proposed accelerator adopting this rescheduled dataflow
is effective in enhancing the energy efficiency. To ensure the energy efficiency was accurate, an evaluation
was done using 65nm CMOS processor and designed prototype accelerator [3].

3.7 ConfuciuX and MAESTRO

Deep Neural Network accelerator architecture designs are dominated by two main components, dataflow
style and allocated total hardware resources. Dataflow utilizes reuse of activations, weights, and outputs in
DNNs by employing computation order, parallelization order, and tiling strategies. Usual hardware resources
are on-chip processing elements and memories. It is possible to allocate hardware resources in many ways to

optimize a particular dataflow architecture of a given DNN model. Recent research shows, an optimized HW
resource allocation is more important for DNN performance that it’s dataflow architecture [10, 7]. Authors of
ConfuciuX [7], Sheng-Chun Kao et al. developed an autonomous method to allocate hardware resources for
a given model and dataflow by employing a combination of reinforcement learning method, REINFORCE for
global search and genetic algorithm for fine tuning. ConfuciuX takes a DNN model, the deployment scenario,
the optimizing objective, and the platform constraints and it generates an optimized hardware allocation.
During training, the RL agent continuously generates hardware resources: PE and buffers as ”actions” which
are evaluated by an analytical model such as MAESTRO [6]. MAESTRO works as an environment that
outputs different statistical matrices as "rewards” which are used to train the underlying policy network to
maximize the "reward”. Later, platform constraints such as area or power punishes actions if those violate
the constraints. This proposed method achieves optimized hardware configuration 4.7 to 24 times faster
than existing other techniques at that time [7] as it uses RL to coarse-grained search for a global optimized
allocation and genetic algorithm for fin-grained local optimization.

DNN model Constraint
o Utilization Report
Chip Area
) r o ‘ i
Deployment {optionas) Fine-tuned e ~¥e
Scenario (LSS LF) | ________ y - L"
SR
Objective | Mutation
(La Y oy} | D Local-
| (IO || srossover
Piatform constrainty | | ESESEEEENNSI | |ACT0N | | —m—" e — i
AT High speed
13381 P J 'g’ pﬂ'\
g - 7
e SO0 I o=t B . . | Low energy
HW eval. environment

-
! Dataflow strategy |
{Optional) " k Global Search via Reinforcement Learning

.4 Local Fine-tuning via Gensetic Algorithm _j
B - ConfuciuX

-

Figure 3: Overview of ConfuciuX [7]

Modeling Accelerator Efficiency via Spatio-Temporal Resource Occupancy (MAESTRO) [6] is a system-
atic data reuse based analytical cost model that provides more than 20 statistical metrics to model and
evaluate DNN accelerator design space. This cost-benefit model is developed based on data-centric direc-
tives that allow accommodating all three crucial factors: DNN layers, hardware and mapping with precise
data reuse. This framework was validated with cycle accurate RTL simulation for MAERI [4] and Eyeriss [5]
accelerators and results were within 3.9% absolute error. Moreover, it provides fast estimation, taking only
493 ms to analyze the layers of Resent50 on a 256PE NVDLA style accelerator with Core-i9 CPU and 16
GB RAM.

4 Simulation Methodology

It is important to ground the above models in some comparative context and to give some insight into
the design process for these accelerators. While the above Literature Review works to provide context for
the majority of the design process, the iteration that is involved with evaluation and then adjustment of
design parameters is not adequately shown. As such, two dataflows are compared using ConfuciuX and
MAESTRO [7, 6] to evaluate their latency, area, and efficiency when applied to an optimized accelerator
architecture. The team behind these evaluation tools supports both Eyeriss and ShiDianNao’s dataflows [5,
8], providing dataflow mapping for these architectures that their tool suite is capable of reading. Comparing
the fitness of other architectures would require constructing that dataflow mapping in a form that ConfuciuX
and MAESTRO can comprehend, and this is beyond the scope of this survey. Nonetheless, these two
serve as particular excellent test cases, as they are each rather specifically tailored for certain applications
(ShiDianNao works best for compact models and is built for the edge whereas Eyeriss is a bit more general
and employs a novel dataflow).

To ensure that they are fairly compared, they will each be optimized for latency, area, average throughput,
and power consumption with identical constraints (max area, max power when optimizing for area). We're

Phtfﬂrf“ Descriptions

Constraint
No constraint. Since we set each action to 12-level, we measured

Unlimited the maximum constraint (power/area) consumption, CZE0E oo
by evaluating entire model with uniform action pair (Pyo5, Byopn)-

Cloud Loose constraint. We set the constraint at 50% Cpoer jarea-
loT Tight constraint. We set the constraint at J0% CJ oo
Extreme small | Extremely tight constraint.
IoT (IoTx) We set the constraint at 3% Coo0 . area-

Figure 4: Constraint Initialization Table from ConfuciuX

setting the maximum constraint provided by our model input to 50% of its possible value, assuming some
cloud-level platform constraints as provided by Figure 4 [7]. Each will see their HW resource allocation
optimized over 60 epochs for the course-grained search of ConfuciuX and over 40 generations for the fine-
grained genetic algorithm or until the tool suite judges that no more optimizations are possible or likely
to be found. While the number of epochs and generations appears low, we found that in many runs, the
difference between the fitness of 100 total epochs and 500 total epochs was no more than a 5% improvement,
and the tool suite appeared to be less prone to seemingly random errors during the genetic search. Since we
are not considering our simulations here to be exhaustive and complete comparisons and are instead using
the results to provide insight into the design process of these accelerators, slightly less accurate results are
acceptable. Three models will be used for this set of tests, VGG16, ResNet18, and ResNet50, to get a sense
of how well suited each architecture is for varying models. We expect that the comparison of ResNet18 and
ResNet50 will be especially interesting, given that ShiDianNao was built with the expectation that it would
be applied towards compact models.

While this is unlikely to be an entirely realistic comparison, given that the two architectures were built
with different technologies, resources, and applications in mind, it should still lend some insight as to why a
designer would choose one or the other and how they might use that information at design time to assist in
building the architecture of their accelerator.

5 Analysis of Results

Fitness Goal: Average Throughput Fitness Goal: Area
Constraint: Area Constraint: Power
Model Eyeriss ShiDianNao Model Eyeriss | ShiDianNao
VGG16 | 78.9959% | 99.7107% VGG16 | 4.4692% 4.4692%
ResNet18 | 78.1106% | 97.2920% ResNet18 | 4.5445% 4.4692%
ResNet50 | 75.6028% | 90.0793% ResNet50 | 5.0369% 4.4692%
Fitness Goal: Latency Fitness Goal: Power
Constraint: Area Constraint: Area
Model Eyeriss ShiDianNao Model Eyeriss | ShiDianNao
VGG16 | 98.9005% | 98.7847% VGG16 | 4.4692% 4.4692%
ResNet18 | 95.4865% | 97.7431% ResNet18 | 4.4692% 4.5445%
ResNet50 | 55.8749% | 98.3109% ResNet50 | 7.1658% 4.4692%

Table 1: Percentage Constraint (Area or Power) Used for Throughput Average, Area, Latency, and Power
Optimization (from left to right, top to bottom.)

Optimized for Area (um”2) Optimized for Latency (Cycles)

256013 £.00-08
3.50E+08
2E+13
3.00E+08
2.50E+08
156013
2.00E+08
16413
1.50E+08
1.00E+08
SE+12
. . -
o 0.00E+00 -
VGE16 RESNEt1E ResSNats0 VGGE16 ResNet18 ResNet50
WEyeriss W ShiDiznNzo WEyeriss WshiDianhao
Optimized for Average Throughput Optimized for Energy (nJ)
2 50E+03 3.00€+08
2.50E+08
2 00e403
2.00E+08
1508403
1.50es08
100e403
1.00e+08
s.00e402
B l l
PP 0 00zs00 . .
VGEG16 ResNet18 ResNetso VEG16 ResNet1B ResNet50
W Eyerss ®WshiDianNao WEyerss WshiDianNao

Figure 5: Results from Various Optimization Runs

As a brief note, unfortunately the units for most of these metrics are uncertain. Nowhere in the repository
that contains these tools are the associated units listed, and it is not entirely clear if the results in their
associated papers are formatted in the same way as our own or otherwise processed. The authors of this
survey reached out to the research group behind ConfuciuX and MAESTRO for assistance on this issue,
but no response was received. A best guess for each metric is included, although we have no good guess for
average throughput. Additionally, it is worth noting that while the fitness goal is specified as ”power” in the
ConfuciuX repository, the paper that introduced it characterized an energy footprint in nJ. It is assumed
that this is the result that was given by this survey’s set of simulations.

From Figure 5 we can see that for essentially all models, when optimized for a metric that would commonly
be associated with performance like latency and average throughput, Eyeriss tends to vastly outperform
ShiDianNao. This aligns with our expectations based on academic papers for these two dataflows and
architectures, as ShiDianNao is built for the edge and built to be compact, not necessarily for superior
performance. This is observed in spite of the fact that the strict constraints applied to ShiDianNao don’t
necessarily carry over to these simulations with ConfuciuX and with MAESTRO’s cost model (entire model
in memory, no off-chip accesses, etc.), which is certainly interesting. Additionally, it can be observed that
when optimized for area and power, while ShiDianNao is performing strictly better with these fitness goals
the difference does not appear to be as steep except for models with a very large number of layers, like
ResNet50. Once again, this aligns with our expectations related to these dataflows.

That being said, it is worth also keeping in mind how much of our constraint range we’re using for each
of these dataflows when optimized for different goals across different models. An architecture that performs
slightly better in regards to latency, for example, may still be evaluated as inferior to an architecture that,
when optimized for latency, is slightly slower but much smaller. In line with that, the constraint usage
found in Table 1 related to average throughput and latency are fascinating. These are already areas where
the dataflow associated with Eyeriss already showcases superior performance, but these metrics were also
extracted with, in many cases, a severely reduced area footprint compared to ShiDianNao’s dataflow. In
regards to latency, most models resulted in similar constraint usage but ResNet50 was particularly notable,
with Eyeriss’ dataflow only using approximately 56% of its constraint and ShiDianNao’s dataflow using
approximately 98%. While the difference was less stark for average throughput, the differences are still
significant. It’s possible that the number of epochs for the design space search could have caused this
disparity, but it is unlikely that these differences would be observed across so many categories if they did
not represent the strengths and weaknesses of each dataflow to some degree.

6 Conclusion

In this survey, a number of design methodologies, dataflows, accelerator architectures, and evaluation pro-
cedures were showcased that the authors of this survey consider to be landmarks within the field of DNN
accelerator design. This survey spoke to designs that were critical to the development of the space, such as
FlexFlow [2], Eyeriss [5], ShiDianNao [8], and MAERI [4]. Each offered important design point options, all
with their own trade-offs for specific applications. ShiDianNao and Eyeriss established themselves with novel
dataflows and tight, energy efficient architectures. FlexFlow and MAERI focused on flexibility in different
ways, opening up avenues for accelerators that were a bit more generalizable.

Somewhat similarly, the papers this survey covered related to dataflow selection and rescheduling [1, 3]
describe important design techniques. Energy efficiency and performance gains are heavily related to the
execution of an efficient and appropriate dataflow. Approaching accelerator design with these techniques in
mind, and, more importantly, the associated attitude towards achieving efficiency gains that these aforemen-
tioned papers highlight is critical for executing on architectural strategies.

Finally, the performance evaluation tools that were covered by this survey, namely MAESTRO and
ConfuciuX [6, 7], are critical within a given designer’s flow to efficiently iterate on their design point selection.
Relying on expert impressions of how an accelerator should perform or simple heuristics is an outdated
methodology, and heavy simulation is simply too slow, not to mention that the HW resource allocation
space can be massive depending on the selected model and dataflow, making it inefficient to comb through
by hand. While exhaustive testing with tools like MAESTRO or ConfuciuX can be impractical, they serve
to provide a useful performance profile.

All of the above tools, dataflows, and techniques have served to widen the design space of DNN accel-

erators and accelerate performance and efficiency gains across the board. It is critical for any designer to
be aware of the aforementioned papers as they are moving through their design flow, choosing their models
carefully for their application, selecting a dataflow that best suites the needs of their model, and engaging
with the mapping strategy and HW resource allocation space efficiently while using capable tool suites to
extract useful performance details. The design space of DNN accelerators is so vast and swiftly growing that
this survey is in no way comprehensive. The authors of this survey hope that a possible knowledge base has
been highlighted in addition to an incredible number of opportunities within the DNN accelerator space.

References

[1]

2]

Y. Chen, J. Emer and V. Sze, ”Using Dataflow to Optimize Energy Efficiency of Deep Neural Network
Accelerators,” in IEEE Micro, vol. 37, no. 3, pp. 12-21, 2017, doi: 10.1109/MM.2017.54.

W. Lu, G. Yan, J. Li, S. Gong, Y. Han and X. Li, "FlexFlow: A Flexible Dataflow Accelerator Archi-
tecture for Convolutional Neural Networks,” 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Austin, TX, 2017, pp. 553-564, doi: 10.1109/HPCA.2017.29.

J. Jo, S. Kim and I. Park, " Energy-Efficient Convolution Architecture Based on Rescheduled Dataflow,”
in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 12, pp. 4196-4207, Dec.
2018, doi: 10.1109/TCSI1.2018.2840092.

Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling Flexible Dataflow
Mapping over DNN Accelerators via Reconfigurable Interconnects. SIGPLAN Not. 53, 2 (February 2018),
461-475. DOL:https://doi.org/10.1145/3296957.3173176.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: a spatial architecture for energy-efficient
dataflow for convolutional neural networks. SIGARCH Comput. Archit. News 44, 3 (June 2016), 367-379.
DOILhttps://doi.org/10.1145/3007787.3001177.

H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer and A. Parashar, ”"MAESTRO: A Data-
Centric Approach to Understand Reuse, Performance, and Hardware Cost of DNN Mappings,” in IEEE
Micro, vol. 40, no. 3, pp. 20-29, 1 May-June 2020, doi: 10.1109/MM.2020.2985963.

S. -C. Kao, G. Jeong and T. Krishna, ” ConfuciuX: Autonomous Hardware Resource Assignment for DNN
Accelerators using Reinforcement Learning,” 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2020, pp. 622-636, doi: 10.1109/MICR0O50266.2020.00058.

Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam, “ShiDianNao:
Shifting Vision Processing Closer to the Sensor,” in ISCA, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in IEEE CVPR,
2016.

[10] X. Yang, M. Gao, J. Pu, A. Nayak, Q. Liu, S. E. Bell, J. O. Setter, K. Cao, H. Ha, C. Kozyrakis et al.,

“DNN dataflow choice is overrated,” arXiv preprint arXiv:1809.04070, 2018.

[11] T. Chen, Z. Du, N. Sun, J. Wang, and C. Wu, “DianNao: a small-footprint high-throughput accelerator

for ubiquitous machinelearning,” in Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Salt Lake City, UT, USA, 2014,
pp- 269-284.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.

10

