
Survey on State of the Art Machine Learning Accelerator Design

Victor Martin Agostinelli III, Indhu Priya Karunagaran,
Diksha Pritam Todankar, and Kazi Ahmed Asif Fuad

[Mid-report] February 2022

1 Introduction

Machine learning solutions are increasingly popular and applicable, but with the slowing down of Moore’s law
comes a necessity for dedicated hardware to accelerate those solutions further. Machine learning accelerators
are, as such, a hot area of both academic and commercial interest. Companies like Tesla and Google are
using dedicated hardware to enable tasks such as real-time vision for autonomous vehicles or translation
between disparate languages. In parallel, academic groups across the world are focused on exploring the
relatively young design space for these accelerators. Developments in this space are constant, exciting, and
have resulted in designs that operate quite differently from one another, in many cases with very clear
trade-offs between them in terms of power consumed, area taken up, and speed.

This survey seeks to acquire a holistic view of the design space, some of the techniques that state of the
art accelerators are being developed with, and a sense of which modern architectures are relevant and how
they compare with one another. To this end, a number of papers published in relevant machine learning
journals and at specific conferences must be engaged with alongside notable commercial options. Indeed, this
survey will be limited to those accelerator architectures being developed by academically focused groups,
as vastly more detailed literature exists on those designs and the process that went into creating them.
Several accelerator designs have already been identified as particularly promising, including Eyeriss from the
Massachusetts Institute of Technology [5], FlexFlow from the Chinese Academy of Sciences [2], and MAERI
from the Georgia Institute of Technology [4], and will be included in this survey’s comparisons. In addition
to this, some limited simulation lies within the scope of this survey, extracting performance and efficiency
details from these designs using cutting edge accelerator evaluation tools [6, 7].

2 Accelerator Design Background

A few key concepts should be kept in mind that apply to most, if not all, machine learning accelerators,
including the typical components of a machine learning accelerator, the design stages for these accelerators,
and how useful metrics can be extracted from a given piece of dedicated hardware that allow for meaningful
comparisons to other architectures.

As far as components go, while this can and does vary on a case to case basis, the bulk of most accelerators
is typically dedicated to a systolic array of processing engines or processing elements (PEs). These PEs are
capable of accelerating typical arithmetic operations that a specific accelerator might need to often deal with,
with one incredibly common example being dedicated hardware within a PE for multiply-and-accumulate
operations (MACs). Tremendous energy efficiency gains can be acquired in the careful use of the array of
PEs in a given accelerator, making their efficient arithmetic for some model or task extremely important
[1]. In addition, many accelerators feature on-board buffers for less costly memory accesses, when necessary.
These buffers allow for a given accelerator to reuse specific pieces of data when it would be too costly in
terms of time or energy efficiency to pull it from off-chip memory.

The traditional design flow for a machine learning accelerator typically follows as such: the specification
of a dataflow, the selection of a mapping strategy, the allocation of hardware resources [6]. The dataflow
for a given accelerator usually defines the accelerator’s data reuse strategy in addition to defining some
strategies for high PE array utilization that are beyond the scope of this survey [6]. Choosing a dataflow

1



is typically done either through heuristics, brute force search of a very limited design space, or selection by
experts [6]. The mapping strategy details how resources are mapped when a given machine learning model
demands more PEs or buffer space than the hardware allows, which can be common for large networks or
accelerators on the edge [7]. It is often wrapped together with the process of hardware resource allocation, as
its design space is quite small. In line with that, hardware resource allocation is, ultimately, the partitioning
of available buffer space and PEs according to the model’s computational needs and is accomplished through
DRL-based methods when it comes to cutting edge solutions, although such developments are still nascent
[7].

When attempting to extract useful metrics, the first set of metrics that appear as fairly universal for
machine learning accelerators would be power efficiency, performance for a given model and benchmark, and
physical size [6]. The final metric is a simple one to measure and make comparisons with, but the first two
can be more difficult to extract, especially if a team of architects is attempting to decide between suitable
accelerator architectures before design-time and must simulate. Fortunately, a few academic groups have
worked to provide tools that are capable of estimating one or both of these metrics, including MAESTRO
[6], a novel tool developed by a group at the Georgia Institute of Technology.

3 Literature Review

3.1 Energy-Efficient Convolution Architecture Based on Rescheduled Dataflow

Rescheduled dataflow convolution has its hardware architecture which enhance energy efficiency. For involv-
ing a large amount of memory access and computation, previous accelerators use parallel processing elements
to overcome real-time constraints. Convolution neural networks (CNN) have been used to various number
of applications due to unprecedented accuracy and particularly in object recognition as it can discriminate
hundreds of object. Here we understand more about 1D and 2D convolution operations and on-chip memory
access patterns of two state-of the-art CNN accelerators. Then we analyze and renovate the dataflow of
convolution and summarize the most suitable CNN architecture which can maximize the energy efficiency by
reducing redundant on-chip memory access. Since the filtering operation is repeated hierarchically ,the CNN
achieves a high recognition rate. According to this filtering, the convolution operation makes various effects
on the image input such as blurring,sharpening and edge detection. By using accumulation,combination
and convolution products we can achieve an output image. The process that takes place is the accelerators
employs parallel multipliers to compute relevant products to an output cycle. The adder tree accumulates
the product to a fixed number to support limited convolution operations. By the row-stationary dataflow
structure, each PE computes partial sum relevant to results and row of weights aggregated by passing to
the upper PEs. The rescheduled dependence dataflow comes into picture to reduce the energy overhead
consumed by on-chip memory access. Few changes are made to reschedule the data flow. The number of
steps is directly proportional to the size of the input feature by using OM. By accumulating the partial sums
incrementally has the input data loaded only once from IN, which enhance the overall energy efficiency.
Output features can be calculated by gradually accessing IM only once and computing the products related
to the input at once.We get to know that the significant portion of the energy is mainly taken in on-chip
memory access,hence the proposed accelerator adopting this rescheduled dataflow is effective in enhancing
the energy efficiency.

3.2 FlexFlow

Authors of FlexFlow [2], Wenyan Lu et al. proposed a flexible dataflow architecture capable of mitigating
the mismatch between the varying dominant parallel types of CNN and computing engine supported parallel
types. Three prominent architectures: Systolic, 2D-Mapping, and Tiling support synapse parallelism, neuron
parallelism, and feature map parallelism receptively. However, these architectures fail to explore parallelisms
efficiently as the number of feature maps, the number of output feature maps, the size of output feature map
and the size of kernel varies dramatically in different layers of CNNs. Although FlexFlow implementation
requires slightly larger area, the computing resource utilization of FlexFlow is 80% compared to the baseline
architectures’ max 60% utilization for mixture of workloads. It achieves 2x performance and power efficiency
speed up compared to Systolic and 2D Mapping whereas 10x for Tiling while maintaining high scalability.

2



3.3 ShiDianNao

Yet another group focused on highly efficient accelerator designs, the authors of ShiDianNao [8] honed in on
an architecture specializing in efficient image recognition, capable of being implemented on the edge alongside
a sensor array. Correspondingly, the models that they were capable of supporting were generally much more
compact, with far fewer parameters expected and a requirement of all memory requests being answered on-
chip as opposed to allowing access to some off-chip memory. Especially in regards to image processing on the
edge, the authors justified expected drops in computational performance by considering sensor bandwidth
and throughput to be a limiting factor, thus rendering larger computational blocks unnecessary [8].

The comparison of ShiDianNao to other pieces of hardware capable of running the aforementioned DNN
and CNN models that this group was focused on was somewhat lacking, unfortunately. They compared this
architecture primarily to one of their previous designs, DianNao [11], in addition to some general purpose
hardware and found, unsurprisingly, that when normalized compared to the resources their previous design
had, ShiDianNao outperformed both comparable general purpose hardware and their previous design on
nearly all workloads, failing to its predecessor only where raw throughput was concerned [8]. Energy savings
abounded with this design, as expected.

3.4 Eyeriss

While a number of CNN accelerator architectures have sought out extreme energy efficiency, Eyeriss remains
interesting as the first to propose a rather novel approach: making use of a row-stationary dataflow [5].
Whereas previous architectures traditionally focused on three dataflows built on minimizing weight, input, or
output accesses for CNN accelerators, a row-stationary dataflow differs in that it approaches tasks adaptively
based on data reuse opportunities and hardware allocation for a given model and its layers. This dataflow
depends on an efficient mapping process, however, for individual computations across the systolic array of
PEs. The research group at MIT that built Eyeriss, in collaboration with NVIDIA, focused on breaking down
the convolutional layers of a given CNN model into what they call ”1D convolution primitives” that they then
mapped over the course of a two-step process [5]. The first of those steps involved mapping the convolution
primitives to a logical array of PEs, with that logical array typically being significantly larger than what is
physically available in hardware. Following efficient logical mapping, physical mapping was necessary, taking
logical PEs and scheduling their tasks on physical PEs such that, oftentimes, a single physical PE would
execute the computations of a ”row” of logical PEs that would handle a given 1D convolution primitive.

The evaluation of the Eyeriss architecture and its row-stationary dataflow was focused on comparisons
to other dataflow options for CNN accelerators, featuring the more traditional weight, input, and output
stationary dataflows in this case, on AlexNet, a CNN that was popular during its inception for accurate
object recognition in computer vision tasks [9] and with consistent hardware and parallelism opportunities.
Across the board, Eyeriss and its dataflow selection was found to access DRAM less often (meaning that less
energy and time was wasted on costly memory acesses) and use less energy per operation than its competitors
[5].

3.5 MAERI

In contrast to a number of other designs, MAERI is focused on flexibility above all. Whereas CNN accelera-
tors often have to select a single dataflow to specialize in, MAERI was built with reconfigurable interconnects,
meaning a flexible network on chip (NoC), between its PEs, allowing for a flexible transition of data across
the array [4]. Interestingly, this adaptability allows for mapping across highly irregular models. Should
optimization for a given model require a non-traditional and unusually structured dataflow, MAERI is ca-
pable of supporting such a network. While this flexibility is important in its own right, aiding multi-purpose
accelerator design, the team behind MAERI was also focused on underlining that the overhead for MAERI’s
NoC was minimal and that it performed competitively compared to other options.

The team behind MAERI evaluated the architecture by comparing it specifically to Eyeriss and even more
traditional systolic array structures. They found that, generally, MAERI was a more compact architecture as
its PEs tended to require fewer elements than those of Eyeriss (a simpler RF structure, separation between
types of PEs for adder switches, multipler switches, simple switches, etc.). Holding the number of PEs
constant or the area constant, MAERI proved to hold advantages over Eyeriss related primarily to latency,

3



as MAERI is relatively power-hungry. The team behind MAERI attributes this primarily to the design’s
very high levels of utilization, as their mapping of a given model can be relatively irregular in comparison
to Eyeriss and other designs.

3.6 ConfuciuX and MAESTRO

Deep Neural Network accelerator architecture designs are dominated by two main components, dataflow
style and allocated total hardware resources. Dataflow utilizes reuse of activations, weights, and outputs in
DNNs by employing computation order, parallelization order, and tiling strategies. Usual hardware resources
are on-chip processing elements and memories. It is possible to allocate hardware resources in many ways
to optimize a particular dataflow architecture of a given DNN model. Recent research shows, an optimized
HW resource allocation is more important for DNN performance that it’s dataflow architecture [10, 7].
Authors of ConfuciuX [7], Sheng-Chun Kao et al. developed an autonomous method to allocate hardware
resources for a given model and dataflow by employing a combination of reinforcement learning method,
REINFORCE for global search and genetic algorithm for fine tuning. ConfuciuX takes a DNN model, the
deployment scenario, the optimizing objective, and the platform constraints and it generates an optimized
hardware allocation. Based on training, the RL agent continuously generates ”actions” which are evaluated
by an analytical model such as MAESTRO [6], an environment which outputs ”rewards” trains underlying
policy network to maximize the ”reward”. Later, platform constraints such as area or power is assigned to
environment to punish actions if those violate the constraints. This proposed method achieves optimized
hardware configuration 4.7 to 24 times faster than existing other techniques at that time [7].

MAESTRO [6] is a systematic data reuse based analytical cost model that provides more than 20 statis-
tical metrics to evaluate DNN accelerator design space. It was validated with cycle accurate RTL simulation
for MAERI [4] and Eyeriss [5] accelerators and results were within 3.9% absolute error. Moreover, it provides
fast estimation, taking only 493 ms to analyze the layers7 of Resent50 on a 256PE NVDLA style accelerator
with Core-i9 CPU and 16 GB RAM.

4 Machine Learning Accelerator Architecture and Design Tech-
niques

5 Simulation Methodology

6 Analysis of Results

7 Discussion

References

[1] Y. Chen, J. Emer and V. Sze, ”Using Dataflow to Optimize Energy Efficiency of Deep Neural Network
Accelerators,” in IEEE Micro, vol. 37, no. 3, pp. 12-21, 2017, doi: 10.1109/MM.2017.54.

[2] W. Lu, G. Yan, J. Li, S. Gong, Y. Han and X. Li, ”FlexFlow: A Flexible Dataflow Accelerator Archi-
tecture for Convolutional Neural Networks,” 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), Austin, TX, 2017, pp. 553-564, doi: 10.1109/HPCA.2017.29.

[3] J. Jo, S. Kim and I. Park, ”Energy-Efficient Convolution Architecture Based on Rescheduled Dataflow,”
in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 12, pp. 4196-4207, Dec.
2018, doi: 10.1109/TCSI.2018.2840092.

[4] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling Flexible Dataflow
Mapping over DNN Accelerators via Reconfigurable Interconnects. SIGPLAN Not. 53, 2 (February 2018),
461–475. DOI:https://doi.org/10.1145/3296957.3173176.

4



[5] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: a spatial architecture for energy-efficient
dataflow for convolutional neural networks. SIGARCH Comput. Archit. News 44, 3 (June 2016), 367–379.
DOI:https://doi.org/10.1145/3007787.3001177.

[6] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer and A. Parashar, ”MAESTRO: A Data-
Centric Approach to Understand Reuse, Performance, and Hardware Cost of DNN Mappings,” in IEEE
Micro, vol. 40, no. 3, pp. 20-29, 1 May-June 2020, doi: 10.1109/MM.2020.2985963.

[7] S. -C. Kao, G. Jeong and T. Krishna, ”ConfuciuX: Autonomous Hardware Resource Assignment for DNN
Accelerators using Reinforcement Learning,” 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2020, pp. 622-636, doi: 10.1109/MICRO50266.2020.00058.

[8] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam, “ShiDianNao:
Shifting Vision Processing Closer to the Sensor,” in ISCA, 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in IEEE CVPR,
2016.

[10] X. Yang, M. Gao, J. Pu, A. Nayak, Q. Liu, S. E. Bell, J. O. Setter, K. Cao, H. Ha, C. Kozyrakis et al.,
“DNN dataflow choice is overrated,” arXiv preprint arXiv:1809.04070, 2018.

[11] T. Chen, Z. Du, N. Sun, J. Wang, and C. Wu, “DianNao: a small-footprint high-throughput accelerator
for ubiquitous machinelearning,” in Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Salt Lake City, UT, USA, 2014,
pp. 269–284.

5


